文章详情
ARTICLE DETAILS

2024年大连交通大学非全日制研究生招生考试《高等代数》考试大纲

  考试范围:

  一、多项式

  1.多项式的带余除法及整除性;

  2.多项式的因式分解、最大公因式、互素和重因式;

  3. 不可约多项式的判定和性质;

  4.多项式函数与多项式的根;

  5. 复系数与实系数多项式的因式分解,有理系数多项式.

  二、行列式

  1.行列式的定义及性质;

  2. 行列式按一行(列)展开;

  3.运用行列式的性质及展开定理等计算行列式.

  三、线性方程组

  1.线性方程组的求解和讨论;

  2.线性方程组有解的判别定理;

  3.线性方程组解的结构及其解空间的讨论.

  四、矩阵

  1.矩阵的基本运算、矩阵的分块;

  2.矩阵的初等变换、初等矩阵;

  3. 矩阵的等价、合同、正交相似;

  4.逆矩阵、伴随矩阵及其性质;

  5.矩阵的秩,矩阵乘积的行列式与秩;

  6. 运用初等变换法求矩阵的秩及逆矩阵;

  7. 矩阵的特征值与特征向量,对角化矩阵.

  五、二次型

  1.二次型及其矩阵表示;

  2.实数域和复数域上二次型的标准形与规范形;

  3.正定二次型及其讨论.

  六、线性空间

  1.线性空间、子空间的定义与性质;

  2. 向量组的线性相关性、极大线性无关组;

  3. 线性空间的基、维数、向量关于基的坐标,基变换与坐标变换;

  4. 生成子空间,子空间的交,子空间的和与直和、维数公式;

  5. 线性空间的同构.

  七、线性变换

  1.线性变换的定义、性质与运算;

  2. 线性变换的矩阵表示;

  3.线性变换的核、值域的概念;

  4. 线性变换及其矩阵的特征多项式、特征值和特征向量的概念和计算、特征子空间;

  5.线性变换的不变子空间.

  八、欧氏空间

  1.欧氏空间的定义及性质,向量的长度、夹角、距离,正交矩阵;

  2. 正交子空间与正交补;

  3.欧氏空间的度量矩阵、标准正交基、线性无关向量组的Schmidt正交化方法;

  4.正交变换与正交矩阵的等价条件,对称变换的概念与性质;

  5.实对称矩阵的正交相似对角化的求法.

  参考书目

  北京大学数学系前代数小组. 高等代数. 高等教育出版社,2019年5月. 第5版.

报名申请
请提供以下信息,招生老师会尽快与您联系。符合报考条件者为您提供正式的报名表,我们承诺对您的个人信息严格保密。
姓名*
提 交
恭喜你,报名成功

您填的信息已提交,老师会在24小时之内与您联系

如果还有其他疑问请拨打以下电话

40004-98986

热门简章

更多
    0/300
    精彩留言