文章详情
ARTICLE DETAILS

2024年西北工业大学非全日制研究生招生考试《高等代数》考试大纲

  考试内容

  (一) 行列式

  1.n阶行列式的概念和基本性质。

  2.行列式按一行(列)展开定理,Laplace定理,行列式乘积法则。

  (二) 矩 阵

  1.矩阵的加法、乘积、方幂、转置等运算及性质。

  2.矩阵的秩的概念及性质。

  3.矩阵的初等变换,等价矩阵,等价标准形。

  4.初等矩阵的概念和性质。

  5.逆矩阵的概念和性质,矩阵可逆的充分必要条件,用伴随矩阵及初等变换求逆矩阵。

  6.分块初等矩阵及应用。

  (三) 向 量

  1.向量的概念、运算,向量的内积。

  2.向量组的线性相关与线性无关。

  3.向量组的极大线性无关组,向量组的秩。

  4.等价向量组的概念和性质。

  5.向量空间的概念,基与正交基、规范正交基。

  (四) 线性方程组

  1.Cramer法则。

  2.求解线性方程组的消元法。

  3.线性方程组有解的判定,齐次线性方程组有非零解的充分必要条件。

  4.齐次线性方程组的基础解系和通解,解空间。

  5.非齐次线性方程组的解向量的性质和通解。

  (五) 相似矩阵

  1.矩阵的特征值与特征向量的概念、性质。

  2.相似变换、相似矩阵的概念及性质。

  3.矩阵可相似对角化的充分必要条件及相似对角矩阵。

  4.正交矩阵、实对称阵及其性质,实对称阵正交相似于对角阵的计算。

  5.l‐矩阵及其标准形,行列式因子,不变因子,初等因子。

  6.Jordan标准形及相似变换阵的计算。

  7.Hamlton-Cayley定理,最小多项式。

  (六) 二次型

  1.二次型的矩阵表示及秩。

  2.用可逆线性变换化二次型为标准形(配方法,初等变换法)。

  3.合同矩阵、对称阵在合同变换下的标准形。

  4.用正交变换化二次型为标准型。

  5.一般数域、复数域、实数域上二次型的标准形和规范形,惯性定理。

  6.正、负定二次型(或正、负定矩阵)的判定。

  (七) 线性空间

  1.线性空间、基底、维数及坐标等概念。

  2.线性子空间及其交与和的基与维数。

  3.线性空间的基变换和过渡矩阵。

  4.线性子空间的直和。

  5.线性空间的同构。

  (八) 线性变换

  1.线性变换的概念及矩阵表示。

  2.象子空间与核子空间的基与维数。

  3.线性变换的运算及在给定基下的矩阵。

  4.线性变换的特征值与特征向量。

  5.不同基下线性变换的矩阵间关系及其化简。

  6.不变子空间。

  (九) 欧氏空间

  1.元素的内积、范数、夹角。

  2.Gram-Schmidt正交化过程,规范正交基。

  3.正交子空间和正交补。

  4.正交变换和对称变换的概念和性质。


报名申请
请提供以下信息,招生老师会尽快与您联系。符合报考条件者为您提供正式的报名表,我们承诺对您的个人信息严格保密。
姓名*
提 交
恭喜你,报名成功

您填的信息已提交,老师会在24小时之内与您联系

如果还有其他疑问请拨打以下电话

40004-98986
0/300
精彩留言